PROBABILITÉS

Exercices

Exercice 1.

(a) **Inégalité de Kolmogorov:** Soient $(X_n)_{n\geq 1}$ des v.a. réelles dans L^2 , indépendantes telles que $\mathbb{E}(X_n)=0$. pour tout n Posons $S_N=\sum_{n=1}^N X_n$. Montrer que, pour tout $\epsilon>0$,

$$\mathbb{P}\left(\max_{1\leq n\leq N}|S_n|\geq \epsilon\right)<\frac{1}{\epsilon^2}\sum_{n=1}^N \mathrm{Var}(X_n).$$

Indication: Pour $n \leq N$, poser $A_n = \{|S_n| \geq \epsilon \text{ mais } |S_m| < \epsilon \text{ pour tout } m < n\}$. Observer que $\{\max_{1 \leq n \leq N} |S_n| \geq \epsilon\} = \bigsqcup_{n=1}^N A_n$, que A_n est indépendant de X_{n+1}, \ldots, X_N et que

$$\mathbb{E}(S_N^2) \ge \sum_{n=1}^N \mathbb{E}(S_N^2 \mathbf{1}_{A_n}).$$

(b) Supposons en plus que $\sum_{n\geq 1} \operatorname{Var}(X_n) < \infty$. Montrer que S_N converge p.s. Indication: En utilisant l'inégalité précédente pour $\max_{m\geq N} |S_m - S_N|$; montrer que la suite $(S_N)_{N\geq 1}$ est p.s. de Cauchy.

Exercice 2.

Soit X un v.a. réele positive. Montrer que

$$\mathbb{E}(X) = \int_{t=0}^{\infty} \mathbb{P}(X \ge t) dt \quad \text{et} \quad \mathbb{E}(X^2) = \int_{t=0}^{\infty} 2t \, \mathbb{P}(X \ge t) dt. \tag{0.1}$$

Indication: utiliser la formule $\mathbb{E}(X^p) = \int_{u=0}^{\infty} u^p d\mu_X(u)$ ou μ_X est la loi de X.

Exercice 3 (Autre preuve de la LGN).

Soient $(X_n)_{n\geq 1}$ des v.a. á valeurs dans $[0,+\infty)$, deux à deux indépendantes, identiquement distribuées et dans L^1 . Notons $\mu=\mathbb{E}(X_1)$ et $S_N=X_1+\cdots+X_N$. Le but est de monter que $\frac{1}{N}S_N\to\mu$ p.s..

Posons, pour chaque $n \ge 1$, $Y_n = \min\{X_n, n\}$.

- (a) Monter que, avec probabilité 1, il existe au plus un nombre fini de n tels que $Y_n \neq X_n$. Indication: utiliser (0.1) et le lemme de Borel Cantelli.
- (b) Posons $T_N = Y_1 + \dots + Y_N$. Monter que $\frac{1}{N} T_N \xrightarrow[N \to \infty]{p.s.} \mu$ si et seulement si $\frac{1}{N} S_N \xrightarrow[N \to \infty]{p.s.} \mu$.

Le but de reste de l'exercice est donc de montrer que $\frac{1}{N}T_N \xrightarrow[N \to \infty]{p.s.} \mu$.

(c) Soit $\alpha > 1$. Montrer que pour tout $\epsilon > 0$,

$$\sum_{k\geq 1} \mathbb{P}\Big(\big| T_{\lfloor \alpha^k \rfloor} - \mathbb{E}(T_{\lfloor \alpha^k \rfloor}) \big| > \epsilon \, \alpha^k \Big) \leq \frac{4}{(1-\alpha^{-2})\epsilon^2} \sum_{m=1}^{\infty} \frac{\operatorname{Var}(Y_m)}{m^2}.$$

Indication: utiliser l'inégalité de Tchebychev et un changement d'ordre de sommation.

(d) En utilisant (0.1) et le théorème de Fubini, montrer que

$$\sum_{m=1}^{\infty} \frac{\operatorname{Var}(Y_m)}{m^2} \leq \sum_{m=1}^{\infty} \frac{\mathbb{E}(Y_m^2)}{m^2} < \infty.$$

Indication: ca peut être utile d'observer que, pour t > 1, $\sum_{m \ge t} \frac{1}{m^2} \le \int_{s=t-1}^{\infty} \frac{1}{s^2} ds = \frac{1}{t-1}$.

- (e) Conclure que $\frac{1}{\alpha^k}T_{\lfloor \alpha^k \rfloor} \xrightarrow[N \to \infty]{p.s.} \mu$.
- (f) Déduire que $\limsup_{N\to\infty} \frac{1}{N} T_N \le \alpha \mu$ p.s. et $\liminf_{N\to\infty} \frac{1}{N} T_N \le \frac{1}{\alpha} \mu$ p.s.. Indication: Borner $\frac{1}{N} T_N$ en fonction de $\frac{1}{\alpha^k} T_{\lfloor \alpha^k \rfloor}$ et $\frac{1}{\alpha^{k+1}} T_{\lfloor \alpha^{k+1} \rfloor}$, ou $k = \lfloor \log_\alpha N \rfloor$.
- (g) Conclure.
- (h) En traitant séparement la partie positive et la partie négative, se débarasser de l'hypostèse de positivité des X_n .

Notation: $\lfloor x \rfloor$ représente la partie entière de x. Remplacez $\lfloor \alpha^k \rfloor$ par simplement α^k pour alleger les notations.